
Cryptography and
Network Security

Eighth Edition

 by William Stallings

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Chapter 8

Random Bit Generation and
Stream Ciphers

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Random Numbers

• A number of network security algorithms and
protocols based on cryptography make use of random
binary numbers:
• Key distribution and reciprocal authentication schemes
• Session key generation
• Generation of keys for the RSA public-key encryption

algorithm
• Generation of a bit stream for symmetric stream

encryption

There are two distinct
requirements for a

sequence of random
numbers:

Randomness

Unpredictability

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Randomness

• The generation of a sequence of allegedly
random numbers being random in some well-
defined statistical sense has been a concern

Two criteria are used to validate that a
sequence of numbers is random:

Uniform distribution

•The frequency of occurrence of ones and zeros should
be approximately equal

Independence

•No one subsequence in the sequence can be inferred
from the others

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Unpredictability

• The requirement is not just that the sequence of
numbers be statistically random, but that the
successive members of the sequence are
unpredictable

• With “true” random sequences each number is
statistically independent of other numbers in the
sequence and therefore unpredictable
• True random numbers have their limitations, such as

inefficiency, so it is more common to implement
algorithms that generate sequences of numbers that
appear to be random

• Care must be taken that an opponent not be able to
predict future elements of the sequence on the basis of
earlier elements

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Pseudorandom Numbers

• Cryptographic applications typically make use
of algorithmic techniques for random number
generation

• These algorithms are deterministic and
therefore produce sequences of numbers that
are not statistically random

• If the algorithm is good, the resulting
sequences will pass many tests of randomness
and are referred to as pseudorandom numbers

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Conversion

to binary

Source of

true

randomness

Random

bit stream

(a) TRNG

TRNG = true random number generator

PRNG = pseudorandom number generator

PRF = pseudorandom function

Deterministic

algorithm

Seed

Pseudorandom

bit stream

(b) PRNG

Figure 8.1 Random and Pseudorandom Number Generators

Deterministic

algorithm

Seed

Pseudorandom

value

(c) PRF

Context-

specific

values

True Random Number
Generator (TRNG)

• Takes as input a source that is effectively random

• The source is referred to as an entropy source and is
drawn from the physical environment of the computer
• Includes things such as keystroke timing patterns, disk

electrical activity, mouse movements, and instantaneous
values of the system clock

• The source, or combination of sources, serve as input to
an algorithm that produces random binary output

• The TRNG may simply involve conversion of an analog
source to a binary output

• The TRNG may involve additional processing to
overcome any bias in the source

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Pseudorandom Number
Generator (PRNG)

• Takes as input a fixed value,
called the seed, and produces a
sequence of output bits using a
deterministic algorithm
• Quite often the seed is generated

by a TRNG

• The output bit stream is
determined solely by the input
value or values, so an adversary
who knows the algorithm and
the seed can reproduce the
entire bit stream

• Other than the number of bits
produced there is no difference
between a PRNG and a PRF

Pseudorandom
number generator

•An algorithm that is
used to produce an
open-ended sequence
of bits

•Input to a symmetric
stream cipher is a
common application
for an open-ended
sequence of bits

Pseudorandom
function (PRF)

•Used to produce a
pseudorandom string
of bits of some fixed
length

•Examples are
symmetric encryption
keys and nonces

Two different forms of PRNG

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

PRNG Requirements

• The basic requirement when a PRNG or PRF is
used for a cryptographic application is that an
adversary who does not know the seed is
unable to determine the pseudorandom string

• The requirement for secrecy of the output of a
PRNG or PRF leads to specific requirements in
the areas of:
• Randomness

• Unpredictability

• Characteristics of the seed

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Seed Requirements

• The seed that serves as input to the PRNG
must be secure and unpredictable

• The seed itself must be a random or
pseudorandom number

• Typically the seed is generated by TRNG

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Entropy

source

Pseudorandom

number generator

(PRNG)

Seed

Pseudorandom

bit stream

Figure 8.2 Generation of Seed Input to PRNG

True random

number generator

(TRNG)

Algorithm Design

• Algorithms fall into two categories:
• Purpose-built algorithms

• Algorithms designed specifically and solely for the
purpose of generating pseudorandom bit streams

• Algorithms based on existing cryptographic
algorithms
• Have the effect of randomizing input data

Three broad categories of cryptographic algorithms are
commonly used to create PRNGs:

• Symmetric block ciphers

• Asymmetric ciphers

• Hash functions and message authentication codes

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Linear Congruential Generator

• An algorithm first proposed by Lehmer that is parameterized with four
numbers:

 m the modulus m > 0

 a the multiplier 0 < a< m

 c the increment 0≤ c < m

 X0 the starting value, or seed 0 ≤ X0 < m

• The sequence of random numbers {Xn} is obtained via the following iterative
equation:

Xn+1 = (aXn + c) mod m

• If m , a , c , and X0 are integers, then this technique will produce a
sequence of integers with each integer in the range 0 ≤ Xn < m

• The selection of values for a , c , and m is critical in developing a good
random number generator

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Blum Blum Shub (BBS)
Generator

• Has perhaps the strongest public proof of its
cryptographic strength of any purpose-built
algorithm

• Referred to as a cryptographically secure
pseudorandom bit generator (CSPRBG)
• A CSPRBG is defined as one that passes the next-bit-

test if there is not a polynomial-time algorithm that,
on input of the first k bits of an output sequence,
can predict the (k + 1)st bit with probability
significantly greater than 1/2

• The security of BBS is based on the difficulty of
factoring n

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Blum Blum Shub Generator

➢

➢ Thus, the least significant bit is taken at each iteration

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 8.3 Blum Blum Shub Block Diagram

Generate

x2 mod n

Select least

significant bit

Initialize

with seed s

[0, 1]

Blum Blum Shub Generator
Example, For Blum Blum Shub with the values p=11, and

q=7, and the x0 = 35, find the values of B1, B2, B3.

Solution:

n=11*7=77

Xi=(Xi-1)
2 mod n

Bi= Xi mod 2

X1=(X0)
2 mod 77=(35)2 mod 77=70

B1= X1 mod 2=70 mod 2= 0

X2=(X1)
2 mod 77=(70)2 mod 77=49

B2= X2 mod 2=49 mod 2= 1

X3=(X2)
2 mod 77=(49)2 mod 77=14

B3= X3 mod 2=14 mod 2= 0

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 8.1 Example Operation of BBS Generator

i Xi Bi i Xi Bi

0 20749 11 137922 0

1 143135 1 12 123175 1

2 177671 1 13 8630 0

3 97048 0 14 114386 0

4 89992 0 15 14863 1

5 174051 1 16 133015 1

6 80649 1 17 106065 1

7 45663 1 18 45870 0

8 69442 0 19 137171 1

9 186894 0 20 48060 0

10 177046 0

PRNG Using Block Cipher Modes of

Operation

• Two approaches that use a block cipher to
build a PNRG have gained widespread
acceptance:

• CTR mode

• Recommended in NIST SP 800-90, ANSI standard
X.82, and RFC 4086

• OFB mode

• Recommended in X9.82 and RFC 4086

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 8.4 PRNG Mechanisms Based on Block Ciphers

(a) CTR Mode

V

Encrypt

pseudorandom bits

K

1

+

(b) OFB Mode

V

Encrypt

pseudorandom bits

K

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Stream Ciphers

➢ process message bit-by-bit or byte-by-byte
(as a stream)

➢ have a pseudo random keystream

➢ combined (XOR) with plaintext bit by bit

➢ randomness of stream key completely
destroys statistically properties in message
⚫ Ci = Mi XOR StreamKeyi

➢ but must never reuse stream key

⚫ otherwise can recover messages (cf book
cipher)

Stream Cipher Structure

Stream Cipher Design
Considerations

•A pseudorandom number generator uses a function that
produces a deterministic stream of bits that eventually repeats;
the longer the period of repeat the more difficult it will be to do
cryptanalysis

The encryption sequence should
have a large period

•There should be an approximately equal number of 1s and 0s

•If the keystream is treated as a stream of bytes, then all of the
256 possible byte values should appear approximately equally
often

The keystream should
approximate the properties of a
true random number stream as

close as possible

•The output of the pseudorandom number generator is
conditioned on the value of the input key

•The same considerations that apply to block ciphers are valid

A key length of at least 128 bits is
desirable

•A potential advantage is that stream ciphers that do not use block
ciphers as a building block are typically faster and use far less
code than block ciphers

With a properly designed
pseudorandom number

generator a stream cipher can
be as secure as a block cipher of

comparable key length

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

RC4

• Designed in 1987 by Ron Rivest for RSA Security

• Variable key size stream cipher with byte-oriented operations

• Based on the use of a random permutation

• Eight to sixteen machine operations are required per output byte
and the cipher can be expected to run very quickly in software

• RC4 is used in the WiFi Protected Access (WPA) protocol that are
part of the IEEE 802.11 wireless LAN standard

• It is optional for use in Secure Shell (SSH) and Kerberos

• RC4 was kept as a trade secret by RSA Security until September
1994 when the RC4 algorithm was anonymously posted on the
Internet on the Cypherpunks anonymous remailers list

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

RC4 Key Schedule

➢ starts with an array S of numbers: 0..255, in ascending order

➢ use key to well and truly shuffle

➢ A temporary vector, T, is also created. If the length of the

key K is 256 bytes, then K is transferred to T. Otherwise,

for a key of length keylen bytes, the first keylen elements of

T are copied from K, and then K is repeated as many times

as necessary to fill out T.

➢ S forms internal state of the cipher

/* Initialization */

for i = 0 to 255 do

S[i] = i;

T[i] = K[i mod keylen];

Initialization of S

RC4 Key Schedule

➢ Next we use T to produce the initial permutation of S. This

involves starting with S[0] and going through to S[255],

and for each S[i], swapping S[i] with another byte in S

according to a scheme dictated by T[i]:

/* Initial Permutation of S */

j = 0;

for i = 0 to 255 do

j = (j + S[i] + T[i]) mod 256;

Swap (S[i], S[j]);

Because the only operation on S is a swap, the only effect is a

permutation. S still contains all the numbers from 0 through 255.

Initialization of S

RC4 Encryption

➢ Once the S vector is initialized, the input key is
no longer used.

➢ Stream generation continues shuffling array values

➢ sum of shuffled pair selects "stream key" value
from permutation

➢ XOR S[t] with next byte of message to en/decrypt
/* Stream Generation */

i, j = 0;

for each message byte Mi
while (true)

i = (i + 1) mod 256;

 j = (j + S[i]) mod 256;

Swap (S[i], S[j]);

t = (S[i] + S[j]) mod 256;

k = S[t];

Ci = Mi XOR k

Stream Generation

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

25525425343210S

T

S

(a) Initial state of S and T

(b) Initial permutation of S

Swap

T

K

T[i]

j = j + S[i] + T[i]

t = S[i] + S[j]

S[i] S[j]

keylen

i

S

(c) Stream Generation

Figure 8.7 RC4

Swap

j = j + S[i]

S[i] S[j] S[t]

k

i

Strength of RC4

• A fundamental vulnerability was revealed in the
RC4 key scheduling algorithm that reduces the
amount of effort to discover the key

• Recent cryptanalysis results exploit biases in the
RC4 keystream to recover repeatedly encrypted
plaintexts

• As a result of the discovered weaknesses the IETF
issued RFC 7465 prohibiting the use of RC4 in TLS

• In its latest TLS guidelines, NIST also prohibited the
use of RC4 for government use

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Stream Ciphers Using
Feedback Shift Registers

With the increasing use of highly constrained devices there has been increasing
interest in developing new stream ciphers that take up minimal memory, are
highly efficient, and have minimal power consumption requirements

Most of the recently developed stream ciphers are based on the use of feedback
shift registers (FSRs)

•FSRs exhibit the desired performance behavior, are well-suited to compact hardware
implementation, and there are well-developed theoretical results on the statistical properties of the
bit sequences they produce

•An FSR consists of a sequence of 1-bit memory cells

•Each cell has an output line, which indicates the value currently stored, and an input line

•At discrete time instants, known as clock times, the value in each storage device is replaced by the
value indicated by its input line

•The effect is as follows: The rightmost (least significant) bit is shifted out as the output bit for this
clock cycle; the other bits are shifted one bit position to the right; the new leftmost (most
significant) bit is calculated as a function of the other bits in the FSR

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 8.8 Binary Linear Feedback Shift Register Sequence Generator

• • • B1 B0 Output

• • •

Bn–2

AnAn–1A2A1

Bn–1Bn

= 1-bit shift register = Exclusive-OR = Multiply circuit (logical AND)

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Entropy Sources

• A true random number generator (TRNG) uses a
nondeterministic source to produce randomness

• Most operate by measuring unpredictable natural
processes such as pulse detectors of ionizing radiation
events, gas discharge tubes, and leaky capacitors

• Intel has developed a commercially available chip that
samples thermal noise by amplifying the voltage measured
across undriven resistors

• LavaRnd is an open source project for creating truly random
numbers using inexpensive cameras, open source code, and
inexpensive hardware
• The system uses a saturated CCD in a light-tight can as a

chaotic source to produce the seed; software processes the
result into truly random numbers in a variety of formats

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Possible Sources of
Randomness

RFC 4086 lists the following possible sources of

randomness that can be used on a computer to

generate true random sequences:

Sound/video input

The input from a sound digitizer
with no source plugged in or from

a camera with the lens cap on is
essentially thermal noise

If the system has enough gain to
detect anything, such input can
provide reasonable high quality

random bits

Disk drives

Have small random fluctuations in
their rotational speed due to

chaotic air turbulence

The addition of low-level disk seek-
time instrumentation produces a

series of measurements that
contain this randomness

There is also an online service (random.org) which can deliver random sequences securely over the Internet

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 8.5

Comparison of PRNGs and TRNGs

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Pseudorandom Number

Generators

True Random Number

Generators

Efficiency Very efficient Generally inefficient

Determinism Deterministic Nondeterministic

Periodicity Periodic Aperiodic

	Slide 1: Cryptography and Network Security
	Slide 2: Chapter 8
	Slide 3: Random Numbers
	Slide 4: Randomness
	Slide 5: Unpredictability
	Slide 6: Pseudorandom Numbers
	Slide 7
	Slide 8: True Random Number Generator (TRNG)
	Slide 9: Pseudorandom Number Generator (PRNG)
	Slide 10: PRNG Requirements
	Slide 11: Seed Requirements
	Slide 12
	Slide 13: Algorithm Design
	Slide 14: Linear Congruential Generator
	Slide 15: Blum Blum Shub (BBS) Generator
	Slide 16: Blum Blum Shub Generator
	Slide 17
	Slide 18: Blum Blum Shub Generator
	Slide 19
	Slide 20: PRNG Using Block Cipher Modes of Operation
	Slide 21
	Slide 22
	Slide 23: Stream Ciphers
	Slide 24: Stream Cipher Structure
	Slide 25: Stream Cipher Design Considerations
	Slide 26: RC4
	Slide 27: RC4 Key Schedule
	Slide 28: RC4 Key Schedule
	Slide 29: RC4 Encryption
	Slide 30
	Slide 31: Strength of RC4
	Slide 32: Stream Ciphers Using Feedback Shift Registers
	Slide 33
	Slide 34
	Slide 35: Entropy Sources
	Slide 36: Possible Sources of Randomness
	Slide 37: Table 8.5

